

It's A Trap! Core Content Lecture – Hyperkalemia

Vincent Fu, MD (PGY-1) | 08 November 2022

LOYOLA MEDICINE DISCLOSURES

No financial disclosures to report.

CORE CONTENT: HYPERKALEMIA

Session Overview

THE HYPERKALEMIA PATIENT

PATHOPHYSIOLOGY OF POTASSIUM

CLINICAL FEATURES

EVIDENCE-BASED MANAGEMENT

NEW KID ON THE BLOCK

CORE CONTENT: HYPERKALEMIA

Patient Case

CHIEF COMPLAINT

72yo M found down at apartment, incontinent.

He c/o R hip pain on flexion, rotation. Last family contact was 3 days ago.

Confused & combative on arrival. GCS 13.

VS: 78/60 74 32 91% NRB 15L ABG: K 9.0 pH 7.23 BGL 32

PMHx CHF HTN DM2 OA

Meds

spironolactone, metoprolol lisinopril diet controlled Celebrex STAT ECG

Source: Mike Cadogan, Hyperkalaemia Clinical Case, LITFL Compendium of Critical Care

CORE CONTENT: HYPERKALEMIA

Pathophysiology

Normal serum K 3.5–5.0 mmol/L

Hyperkalemia > 5.5 mmol/L

- impaired excretion via kidneys
- impaired shift into cells from serum
- combination of both

REGULATION OF POTASSIUM HOMEOSTASIS

Source: Palmer et al. Clinical Management of Hyperkalemia. Mayo Clin Proc. March 2021

INCREASED INTAKE

Potassium supplements (IV or PO) Excess in diet Salt substitutes (K+ salts of penicillin)

INCREASED PRODUCTION

Rhabdomyolysis / intense physical activity Hemolysis / Tumor Lysis Syndrome Trauma / extensive burns / crush injuries

Source: Mike Cadogan, Hyperkalaemia Clinical Case, LITFL Compendium of Critical Care

SHIFT FROM INTRA TO EXTRACELLULAR

Acidosis (metabolic or respiratory) **Insulin deficiency** Rx: succinylcholine, beta-blockers, digoxin OD

DECREASED EXCRETION

PSEUDOHYPERKALEMIA

Hemolysis in lab tube Thrombocytosis Leukocytosis

AKI/CKD/ESRD: decreased GFR **Decreased mineralocorticoid activity** Rx: NSAIDs, cyclosporin, K-sparing diuretics, ACEIs

Source: Mike Cadogan, Hyperkalaemia Clinical Case, LITFL Compendium of Critical Care

CORE CONTENT: HYPERKALEMIA

Clinical Features

Generalized muscle weakness Flaccid paralysis/paresthesias in UE+LE Lethargy, confusion, weakness, palpitations Clinical features often nonspecific

ECG: one of the most important diagnostic tools

ECG CHANGES IN HYPERKALEMIA

serum K 5.5-6.5 6.5-7.5 7.5-8.5 >8.5

Source: Anand Swaminathan, Hyperkalaemia, CORE EM

Source: Mike Cadogan, Hyperkalaemia Clinical Case, LITFL Compendium of Critical Care

ECG CHANGES IN HYPERKALEMIA

Source: Mike Cadogan, Hyperkalaemia Clinical Case, LITFL Compendium of Critical Care

ECG CHANGES IN HYPERKALEMIA

Source: Mike Cadogan, Hyperkalaemia Clinical Case, LITFL Compendium of Critical Care

CORE CONTENT: HYPERKALEMIA

Evidence Based Management

stabilization

redistribution elimination

EVIDENCE BASED MANAGEMENT

Stabilization

LR / Plasmalyte use if hypovolemic, and bicarbonate is normal/high

[] do not give NS; it will increase the potassium

if bicarbonate is low... give bicarb (coming up next)

Source: Josh Farkas, Hyperkalemia, EMCrit IBCC

Calcium

indicated for wide QRS, sine wave pattern, or hyperK cardiac arrest

Calcium chloride: 1g IV over 10 min

- 3x more potent than Ca gluconate
- [!] severe thrombophlebitis; best w/ central access
 Calcium gluconate: 3g IV over 10 min
 less potent, less irritating to veins, OK with PIV

Calcium

indicated for wide QRS, sine wave pattern, or hyperK cardiac arrest

bradycardia, hypotension, peripheral vasodilation

 administer slowly to avoid these complications
 avoid Ca in digoxin toxicity (use Mg instead)

* calcium does not lower the serum K level

Source: Mike Cadogan, Hyperkalaemia Clinical Case, LITFL CCC

EVIDENCE BASED MANAGEMENT

Redistribution

Insulin + Glucose/Dextrose

drives K+ into cells + protects from hypoglycemia

Insulin: Dextrose:

5 units IV bolus 500ml D10 over 4 hours

Sodium Bicarbonate drives K+ into cells for several hours

only effective at driving K+ into cells if pt is acidotic

Isotonic bicarbonate: D5W + 150 mEq/L NaHCO₃ – use for volume resuscitation if bicarbonate is low

Albuterol beta-2 agonist, nebulizer route

Albuterol nebulizer: 10-20mg continuous

effective in renal patients who are fluid overloaded

EVIDENCE BASED MANAGEMENT

Elimination

Diuretic/Nephron Bomb

might try for patients with normal renal function/mild dysfunction

Loop diuretic: 160mg IV Lasix / 4mg IV Bumex Thiazide: 0.5–1.0g IV chlorothiazide +/- Acetazolamide: 250–1000mg IV/PO +/- Fludrocortisone: 0.2mg PO (esp pt on ACEI/ARB)

* replace urine losses with crystalloid to avoid hypovolemia!

Source: Josh Farkas, Hyperkalemia, EMCrit IBCC

Kayexalate / SPS

sodium polystyrene sulfonate

Veltassa / patiromer

sodium-free cation-exchange polymer

Lokelma / SZC sodium zirconium cyclosilicate

Source: Josh Farkas, Hyperkalemia, EMCrit IBCC

NEW KID ON THE BLOCK

Lokelma / SZC

CHARACTERISTICS OF K+ BINDING AGENTS FOR HYPERKALEMIA

Increased K⁺ intake

GI tract

ne

	Kayexalate	Veltassa	Lokelma
Characteristic	SPS	Patiromer	SZC
Approval date	1958	US, 2015; EU, 2017	US, 2018; EU, 2018
Mechanism of action	K ⁺ binding in exchange for Na ⁺ in GI tract († fecal excretion)	K ⁺ binding in exchange for Ca ²⁺ in GI tract († fecal excretion)	K ⁺ binding in exchang ^e for H ⁺ and Na ⁺ in GI tract (↑ fecal excretion)
Site of action	Colon	Colon	Small and large intestines
Selectivity for K ⁺	Nonselective; also binds Ca ²⁺ and Mg ²⁺	Nonselective; also binds Na ⁺ and Mg ²⁺	Highly selective; also binds NH4 ⁺
Onset of action	Variable; several hours	7 h	l h
Na ⁺ content	1500 mg per 15-mg dose	None	400 mg per 5-g dose
Ca ²⁺ content	None	I.6 g per 8.4-g dose	None
Sorbitol content	20,000 mg per 15-g dose	4000 mg per 8.4-g dose	No sorbitol content
Dosing	I5 g I-4 times (oral); 30-50 g I-2 times (rectal)	8.4 g QD (oral), titrate up to 16.8 g or 25.2 g QD	I 0 g TID (oral) for initial correction of hyperkalemia (for ≤48 h), then 5 g QOD to 15 g QD for maintenance
Serious AEs	Cases of fatal GI injury reported	None reported	None reported
Most common AEs	Gl disorders (constipation, diarrhea, nausea, vomiting, gastric irritation), hypomagnesemia, hypokalemia, hypocalcemia, systemic alkalocic	GI disorders (abdominal discomfort, constipation, diarrhea, nausea, flatulence), hypomagnesemia	GI disorders (constipation, diarrhea, nausea, vomiting), mild to moderate edema

Mayo Clin Proc. March 2021

 $AE = adverse event; Ca^{2+} = calcium; EU = European Union; GI = gastrointestinal; H^+ = hydrogen ion; K^+ = potassium; Mg^{2+} = magnesium; Na^+ = sodium; NH4^+ = magnesium; Na^+ = sodium; NA^+ = sodium;$ ammonium; QD = once daily; QOD = every other day; SPS = sodium polystyrene sulfonate; SZC = sodium zirconium cyclosilicate; TID = three times daily; US = United States; \uparrow = increased.

Data from references 12, 59, 60, and 79 to 81.

LOKELMA | MECHANISM OF ACTION

Lokelma / SZC sodium zirconium cyclosilicate

RESEARCH ARTICLE

Characterization of Structure and Function of ZS-9, a K^+ Selective Ion Trap

Fiona Stavros¹*, Alex Yang², Alejandro Leon¹, Mark Nuttall¹, Henrik S. Rasmussen¹

1. ZS Pharma Inc., Coppell, Texas, United States of America, **2.** Xelay Acumen, Inc., Belmont, California, United States of America

LOKELMA | MECHANISM OF ACTION

selective ion

Kayexalate / SPS sodium polystyrene sulfonate

Lokelma / SZC sodium zirconium cyclosilicate

Approved 1958 | 7 day trial (n = 33)

Mean Δ :-0.125 mEq/LOnset:up to 7 hoursBinds:K+, Ca²⁺, Mg²⁺ (sloppy!)

[!] colonic ulcers, ischemia, necrosis; 30g dose as studied Approved 2018 | 12 mo trial (n = 70)

Mean Δ:-0.410 mEq/L (4 hr)Onset:1 hourBinds:K+ selectively (nice!)

[+] acts in small & large bowel,10g dose as studied

Source: Stavros et al. PLOS ONE, 2014. | Palmer et al. *Clinical Management of Hyperkalemia.* Mayo Clin Proc. March 2021

CORE CONTENT: HYPERKALEMIA

Recommended Management

LOYOLA EM CONFERENCE

thank you

inline references provided throughout deck

ACKNOWLEDGEMENTS

Kristin Larson, MSN, RN, AGNP-BC, CNN CKD House Calls Nurse Practitioner | Optum/United Health Care

Russell Attridge, PharmD, MSc, BCPS Medical Science Liaison – Renal | AstraZeneca Pharmaceuticals LP

