### Check The Oven Core Imaging Lecture – Obstetric Sonography

Vincent Fu, MD (PGY-1) | 22 November 2022





DISCLOSURES

### No financial disclosures to report.



CORE IMAGING: OBSTETRIC SONOGRAPHY

# Session Overview





**Review of Gestational Development** 

Approach to Obstetric Sonography

**AI-Powered Medical Computer Vision** 

Future of Smart Sonography

#### **CORE IMAGING: OBSTETRIC SONOGRAPHY**

## Gestational Development



#### NEW PATIENT ROOMED

## 22yo F presents with n/v, missed menstrual period.

### Home pregnancy test was positive.

#### **GESTATIONAL DEVELOPMENT**

### Signs & Symptoms





### Amenorrhea Nausea (+/- vomiting) Frequency of urination (w/o dysuria) **Breast enlargement & tenderness** Fatigue



## Symptoms develop abruptly and occur daily.

## Prospective Study (n=221) 60% had s/s by 5-6 weeks past LMP 90% symptomatic by 8 weeks

Source: Sayle AE, et al. A prospective study of the onset of symptoms of pregnancy. J Clin Epidemiol. 2002;55(7):676.

#### **GESTATIONAL DEVELOPMENT**

### First Trimester Exam & Evaluation





### Abdominal Exam / Uterus 12 wk = fundus palpable above symphysis 16 wk = fundus halfway between symphysis & umbilicus



### Fetal Cardiac Activity Usually detectable @ 10-12wk gestation with handheld Doppler / TAUS

### Fetal heart size <7mm @ 10-12wk



### Beta hCG Doubles q29-53h during first 30 days after implantation of a viable IUP Peak @ 8-10wk (60k-90k), wide normal range

[!] slower rise = consider ectopic, early embryonic demise



### Ultrasound (TVUS) 4-5 wk = gestational sac, intrauterine fluid 5-6 wk = yolk sac, fetal pole +cardiac activity

#### TVUS EVALUATION @ 5-6 WK







#### **GESTATIONAL DEVELOPMENT**

### **Diagnosis of Pregnancy**





### Formal diagnosis is based on any of the following: Detection of hCG in blood or urine Identification of pregnancy by TVUS/TAUS +Fetal cardiac activity by Doppler/US

#### CORE IMAGING: OBSTETRIC SONOGRAPHY

## Approach to **Obstetric Sonography**

APPROACH TO OBSTETRIC SONOGRAPHY

### Indications for 1TUS





Confirm presence of an intrauterine pregnancy **Evaluate suspected ectopic pregnancy** Evaluate vaginal bleeding/pelvic pain Estimate gestational age Diagnose/evaluate multiple gestations **Confirm cardiac activity** Assess fetal anomalies / uterine abnormalities Evaluate suspected hydatidiform mole

Source: ACOG Practice Bulletin No. 175: Ultrasound in Pregnancy. Obstet Gynecol. 2016;128(6):e241.



### US is safe for the fetus when used appropriately Should be used when medical assessment needed

### [ALARA]

[!] ultrasound energy delivered to fetus cannot be assumed to be completely innocuous; theoretical concerns about thermal effects, cavitation, vibration

Source: ACOG Practice Bulletin No. 175: Ultrasound in Pregnancy. Obstet Gynecol. 2016;128(6):e241.

APPROACH TO OBSTETRIC SONOGRAPHY

### ED Scope of OB US





### 4-8 WEEKS GA

### size, location, number of gestational sacs yolk sac @ ~5.5 wk embryo @ ~6 wk +/- cardiac activity

**BEYOND 8 WEEKS GA** 

fetal number, presentation, anatomy, movement fetal cardiac activity (FHR calculation) fetal biometry (EGA/EFW calculation)

Source: Shipp TD. Overview of ultrasound examination in obstetrics and gynecology. UpToDate.

#### FETAL CARDIAC ACTIVITY EVALUATION



### FHR CALCULATION

### find fetal heart motion drop M-mode gate FHR mode: peak to peak

[!] don't use Doppler (ALARA)



Source: M-Mode (Yes) vs Doppler (No) | ALARA | Fetal Heart Rate. Everyday Ultrasound Blog.



### EGA CALCULATION (CRL)

find sagittal view caliper/distance tool CRL/GA mode

CRL most accurate in 1T (up to 14wk) if CRL >84mm, use BPD



Reference: MacKenzie AP et al. *Prenatal assessment of gestational age, date of delivery, and fetal weight.* UpToDate. Image: Moroder W. *Ultrasound image of the foetus at 12 weeks of pregnancy in a sagittal scan.* Wikimedia Commons.



### EGA CALCULATION (BPD/HC)

find axial view caliper/distance tool (outer edge to inner) BPD/HC mode



Reference: MacKenzie AP et al. *Prenatal assessment of gestational age, date of delivery, and fetal weight.* UpToDate. Image: *Fetal Head Measurements.* FetalUltrasound.com.



### EGA CALCULATION (FL)

locate femur longitudinal view caliper/distance tool FL mode



Reference: MacKenzie AP et al. *Prenatal assessment of gestational age, date of delivery, and fetal weight.* UpToDate. Image: Jones J. *Femur length (obstetric ultrasound).* Radiopaedia, rID 26433.



### EGA CALCULATION (AC)

### abdomen, axial view AC mode

least accurate if used alone



Reference: MacKenzie AP et al. *Prenatal assessment of gestational age, date of delivery, and fetal weight.* UpToDate. Image: Leung TN. *Fetal biometry in ethnic Chinese.* Ultrasound Obstet Gynecol. 2008;31:321-7.



### COMBINED CALCULATIONS

System dependent, can use any/all measurement parameters

### EGA : MSD, CRL, BPD, OFD, HC, AC, TAD, APAD, FL, HL, Ulna (UL), Tibia (TL), Foot (FT), FTA, BinocD (BN)

EFW : HC/AC, TCD/AC, LVW/HW, BPDa, FL/AC, FL/BPD, CI, AFI, A XT

Source: Siemens ACUSON Juniper Ultrasound System Datasheet, 2018.

CORE IMAGING: OBSTETRIC SONOGRAPHY

### Al-Powered Medical Computer Vision



#### SOFTWARE ENGINEERS VS PHYSICIANS





#### AI-POWERED MEDICAL COMPUTER VISION





www.nature.com/npjdigitalmed

Check for updates

### **REVIEW ARTICLE** OPEN Deep learning-enabled medical computer vision

Andre Esteva  $\mathbb{D}^{1}$  Katherine Chou<sup>2,5</sup>, Serena Yeung<sup>3,5</sup>, Nikhil Naik  $\mathbb{D}^{1,5}$ , Ali Madani<sup>1,5</sup>, Ali Mottaghi<sup>3,5</sup>, Yun Liu  $\mathbb{D}^{2}$ , Eric Topol<sup>4</sup>, Jeff Dean<sup>2</sup> and Richard Socher<sup>1</sup>

A decade of unprecedented progress in artificial intelligence (AI) has demonstrated the potential for many fields—including medicine—to benefit from the insights that AI techniques can extract from data. Here we survey recent progress in the development of modern computer vision techniques—powered by deep learning—for medical applications, focusing on medical imaging, medical video, and clinical deployment. We start by briefly summarizing a decade of progress in convolutional neural networks, including the vision tasks they enable, in the context of healthcare. Next, we discuss several example medical imaging applications that stand to benefit—including cardiology, pathology, dermatology, ophthalmology–and propose new avenues for continued work. We then expand into general medical video, highlighting ways in which clinical workflows can integrate computer vision to enhance care. Finally, we discuss the challenges and hurdles required for real-world clinical deployment of these technologies.

npj Digital Medicine (2021)4:5; https://doi.org/10.1038/s41746-020-00376-2

AI-POWERED MEDICAL COMPUTER VISION

### Brief Sidenote: Neural Networks













| 157 | 153 | 174 | 168 | 150 | 152 | 129 | 151 | 172 | 161 | 155 | 156 | 157 | 153 | 174 | 168 | 150 | 152 | 129 | 151 | 172 | 161 | 155 | 156 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| 155 | 182 | 163 | 74  | 75  | 62  | 33  | 17  | 110 | 210 | 180 | 154 | 155 | 182 | 163 | 74  | 75  | 62  | 33  | 17  | 110 | 210 | 180 | 154 |
| 180 | 180 | 50  | 14  | 34  | 6   | 10  | 33  | 48  | 105 | 159 | 181 | 180 | 180 | 50  | 14  | 34  | 6   | 10  | 33  | 48  | 106 | 159 | 181 |
| 206 | 109 | 5   | 124 | 131 | 111 | 120 | 204 | 166 | 15  | 56  | 180 | 206 | 109 | 5   | 124 | 131 | 111 | 120 | 204 | 166 | 15  | 56  | 180 |
| 194 | 68  | 137 | 251 | 237 | 239 | 239 | 228 | 227 | 87  | 71  | 201 | 194 | 68  | 137 | 251 | 237 | 239 | 239 | 228 | 227 | 87  | п   | 201 |
| 172 | 105 | 207 | 233 | 233 | 214 | 220 | 239 | 228 | 98  | 74  | 206 | 172 | 105 | 207 | 233 | 233 | 214 | 220 | 239 | 228 | 98  | 74  | 206 |
| 188 | 88  | 179 | 209 | 185 | 215 | 211 | 158 | 139 | 75  | 20  | 169 | 188 | 88  | 179 | 209 | 185 | 215 | 211 | 158 | 139 | 75  | 20  | 169 |
| 189 | 97  | 165 | 84  | 10  | 168 | 134 | 11  | 31  | 62  | 22  | 148 | 189 | 97  | 165 | 84  | 10  | 168 | 134 | 11  | 31  | 62  | 22  | 148 |
| 199 | 168 | 191 | 193 | 158 | 227 | 178 | 143 | 182 | 105 | 36  | 190 | 199 | 168 | 191 | 193 | 158 | 227 | 178 | 143 | 182 | 106 | 36  | 190 |
| 205 | 174 | 155 | 252 | 236 | 231 | 149 | 178 | 228 | 43  | 95  | 234 | 205 | 174 | 155 | 252 | 236 | 231 | 149 | 178 | 228 | 43  | 96  | 234 |
| 190 | 216 | 116 | 149 | 236 | 187 | 85  | 150 | 79  | 38  | 218 | 241 | 190 | 216 | 116 | 149 | 236 | 187 | 86  | 150 | 79  | 38  | 218 | 241 |
| 190 | 224 | 147 | 108 | 227 | 210 | 127 | 102 | 36  | 101 | 255 | 224 | 190 | 224 | 147 | 108 | 227 | 210 | 127 | 102 | 36  | 101 | 255 | 224 |
| 190 | 214 | 173 | 66  | 103 | 143 | 95  | 50  | 2   | 109 | 249 | 215 | 190 | 214 | 173 | 66  | 103 | 143 | 96  | 50  | 2   | 109 | 249 | 215 |
| 187 | 196 | 235 | 75  | 1   | 81  | 47  | ٥   | 6   | 217 | 255 | 211 | 187 | 196 | 235 | 75  | 1   | 81  | 47  | 0   | 6   | 217 | 255 | 211 |
| 183 | 202 | 237 | 145 | 0   | 0   | 12  | 108 | 200 | 138 | 243 | 236 | 183 | 202 | 237 | 145 | 0   | 0   | 12  | 108 | 200 | 138 | 243 | 236 |
| 195 | 206 | 123 | 207 | 177 | 121 | 123 | 200 | 175 | 13  | 96  | 218 | 196 | 206 | 123 | 207 | 177 | 121 | 123 | 200 | 175 | 13  | 96  | 218 |









AI-POWERED MEDICAL COMPUTER VISION

### **Computer vs Physician**



#### AI-POWERED MEDICAL COMPUTER VISION





**Fig. 2** Physician-level diagnostic performance. CNNs—trained to classify disease states—have been extensively tested across diseases, and benchmarked against physicians. Their performance is typically on par with experts when both are tested on the same image classification task. **a** Dermatology<sup>7</sup> and **b** Radiology<sup>9</sup>. Examples reprinted with permission and adapted for style.

CORE IMAGING: OBSTETRIC SONOGRAPHY

The Future of Smart Sonography